Designing Electronic Circuits Using Evolutionary Algorithms. Arithmetic Circuits: A Case Study
نویسنده
چکیده
A Genetic Algorithm is presented which is capable of evolving 100% functional arithmetic circuits. Evolved designs are presented for one-bit, two-bit adders with carry, and two and three-bit multipliers and details of the 100% correct evolution of three and four-bit adders. The largest of these circuits are the most complex digital circuits to have been designed by purely evolutionary means. The algorithm is able to re-discover conventionally optimum designs for the one-bit and two-bit adders, but more significantly is able to improve on the conventional designs for the two-bit multiplier. By analysing the history of an evolving design up to complete functionality it is possible to gain insight into evolutionary process. The technique is based on evolving the functionality and connectivity of a rectangular array of logic cells and is modelled on the resources available on the Xilinx 6216 FPGA device. Further work is described about plans to evolve the designs directly onto this device.
منابع مشابه
Evolutionary Design of Digital Circuits Using Genetic Programming
For simple digital circuits, conventional method of designing circuits can easily be applied. But for complex digital circuits, the conventional method of designing circuits is not fruitfully applicable because it is time-consuming. On the contrary, Genetic Programming is used mostly for automatic program generation. The modern approach for designing Arithmetic circuits, commonly digital circui...
متن کاملA High-Speed Dual-Bit Parallel Adder based on Carbon Nanotube FET technology for use in arithmetic units
In this paper, a Dual-Bit Parallel Adder (DBPA) based on minority function using Carbon-Nanotube Field-Effect Transistor (CNFET) is proposed. The possibility of having several threshold voltage (Vt) levels by CNFETs leading to wide use of them in designing of digital circuits. The main goal of designing proposed DBPA is to reduce critical path delay in adder circuits. The proposed design positi...
متن کاملEvolutionary QCA Fault-Tolerant Reversible Full Adder
Today, the use of CMOS technology for the manufacture of electronic ICs has faced many limitations. Many alternatives to CMOS technology are offered and made every day. Quantum-dot cellular automata (QCA) is one of the most widely used. QCA gates and circuits have many advantages including small size, low power consumption and high speed. On the other hand, using special digital gates called re...
متن کاملThe Partial Derivative method in Arithmetic Circuit Complexity
In this thesis we survey the technique of analyzing the partial derivatives of a polynomial to prove lower bounds for restricted classes of arithmetic circuits. The technique is also useful in designing algorithms for learning arithmetic circuits and we study the application of the method of partial derivatives in this setting. We also look at polynomial identity testing and survey an e cient a...
متن کاملA Guide to Learning Arithmetic Circuits
An arithmetic circuit is a directed acyclic graph in which the operations are {+,×}. In this paper, we exhibit several connections between learning algorithms for arithmetic circuits and other problems. In particular, we show that: • Efficient learning algorithms for arithmetic circuit classes imply explicit exponential lower bounds. • General circuits and formulas can be learned efficiently wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997